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Summary

We apply the Generalized Minimal Residual (GMRES) iterative equation so-
lution technique to a set of full, unsymmetric matrix systems generated by a
standard boundary element method. The test problems chosen produced well
conditioned matrices. The GMRES technique, when used without precondi-
tioning and with a sufficient number of trial vectors, solved the matrix system
using as few as 23% of the operations required by a direct Gauss reduction.
The class of partial LU decomposition preconditioners tested degraded the
condition number of the matrices, and consequently did not reduce the GM-
RES solution time. In general, the GMRES technique does not appear to
be of practical interest compared to the direct reduction unless other factors
(availability of a good approximation to the final solution, etc.) intervene.
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1 Introduction

Iterative equation solvers are becoming increasingly popular for certain spe-
cial computational applications. One such application is in solving large
sparse matrix systems, such as those generated in 3-D finite element or finite
difference analysis. In these problems, the storage required for the nonzero
matrix entries may be only .02 N 2 [1], and similarly the number of opera-
tions required for a matrix-vector multiply is significantly less than N 2 (so
that we can afford many iterations). Another widely-investigated application
for iterative methods is in cases where the solution is already approximately
known, such as in time-dependent problems or nonlinear problems. Finally,
iterative solvers are generally more amenable to vectorization/parallelization
than direct solvers.

In this study, we have examined whether a particular iterative solver
(GMRES [2]) is competitive with direct Gauss solvers for full, unsymmetric
matrices derived from standard boundary integral techniques. Here, we do
not have the storage or matrix-vector multiply advantages that occur in
solving sparse matrices.

The Generalized Minimal Residual algorithm developed by Saad and
Schultz [2], and presented in preconditioned form by Shakib, Hughes, and
Johan [31, is very similar to conjugate gradient algorithms. However, GM-
RES is intended specifi-ally for unsymmetric matrices, it requires only a
single matrix-vector mu.tiply in each iteration, and its rate of convergence
depends only on the condition number of the matrix. (Some conjugate gra-
dient algorithms' convergence rates depend on the square of the condition
number.) Brussino and Sonnad [4] present an extensive survey of the various
conjugate-gradient and GMRES algorithms. Their test cases [4,5] indicate
that GMRES is comparable or superior to preconditioned conjugate gradient
algorithms' for many problems.

Section 2 introduces the test problems we investigated, and discusses the
matrix condition numbers. In addition, we discuss the residual error from a
direct solution and some results for a least squares conjugate gradient solver.
In section 3 we discuss the GMRES algorithm and proposed preconditioner.

'It should be noted that the least-squares conjugate gradient algorithm discussed in
section 2.3 is apparently one of the least efficient conjugate gradient algorithms for un-
symmetric matrices.
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Section 4 discusses our numerical results, and section 5 details our conclu-
sions. Appendix A includes a listing of the GMRES program.

I 2 Test Problem

To generate the systems of equations used for testing, we employed Brebbia's
I boundary integral program PROGRAMI [6]. This program solves Laplace's

equation
V 2u=0 (1)

I in two dimensions, subject to the boundary conditions u = V on boundary
rI and q = q on boundary 2. (The entire boundary r = r1 + 12.) The
boundary integral equation is derived by the method of weighted residuals,
and becomes

I ui + I u2dr,+ I dT, = I"u'dT'2 + I qu'dr, (2)

where u' is the solution for u at point i, u" is the Green's function for u, and
q, = &n-. Constant elements are used to generate a matrix system of the
form

Ax =b (3)

We chose to examine one physical problem with different aspect ratios,
and produce successively finer boundary element discretizations to generate
our test cases. Figure 1 shows the physical case considered, and its exact
solution. We examined three cases: L=1, L=10, and L=100. Figure 2 shows
a typical mesh with 12 unknowns for the square (L=1) example.

2.1 Condition Number Results

I It is well known that the rate of convergence of iterative methods, and there-
fore the solution time, is closely tied to the condition number of the matrix
A. The accuracy of direct solution methods may be impacted by the con-
dition number of A, but of course the solution time is unaffected. Table 1
shows the condition numbers for our test problems with various N. Notice
that the meshes are ver well conditioned.

2Condition numbers estimated with LINPAK subroutine DGBCO.
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Figure 2: Typical Square (L=1) Mesh with 12 Elements

Number of Inverse of Condition Number
Elements 1/te

N L=1 L=10 L=100
40 4.8 x 10 - 2 2.0 x 10 - 3 9.1 x 10 5

80 2.4 x 10- 2 9.5 x 10- 4 4.7 x 10- 5

160 1.1 x 10- 2 4.5 x 10- 4 2.3 x 10- 5
320 5.4 x 10 - 3 2.1 _ 10- 4 1.1 x 10- 5

I Table 1: Condition Number for Test Cases
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2.2 Direct Solver Results

IWe used the direct solver SLNPD from Brebbia [6]. This routine uses direct
Gauss elimination with row interchanges to solve unsymmetric, non-positive
definite matrices. (Row interchanges are only employed when the magnitude
of the diagonal entry is less than 10-'.) As is well known [8], it requires
N 3 /3 floating point operations (flops) 3 to solve an N x N matrix system.
Aside from the storage required for the original (full) matrix and the forcing
vector, the routine requires no additional memory.

In choosing a convergence tolerance for iterative methods, we obviously
should not request more accury than we can obtain from a direct solution.
Table 2 shows the 2-norm (/rTr) of the residual r

I -Ax= r (4)

computed with double precision from the direct solution results. Notice that
the residual norm is extremely small for the direct solution.

2.3 Least-Squares Conjugate Gradient Results
As a basis for comparison, table 3 shows the ratio of the flops4 for the least-
squares conjugate gradient method to the flops for a direct solution. (The
least squares conjugate gradient algorithm has been successfully used in nu-
merous other applications at University of Michigan [7].) Convergence is
assumed to occur when the norm of the residual is reduced by a factor (ftol)
of 10- . Notice that the unpreconditioned conjugate gradient method is
never competitive with direct solutions for the test problem considered.

I

3"...a flop roughly constitutes the effort of doing a floating point add, a floating point
multiply, and a little subscripting." [8], p. 324 Each iteration requires 2N operations for large N.I 6



-Number of Norm of Residual
Elements Jlril

N L=I L=10 L=100
40 2.1 x 1013 1.1 X 10- 1 4 3.0 x 10"
80 4.9 x 10- 14 4.4 x 10-'5 3.4 x 10-1 5

160 8.0 x 10- 13 5.5 X 10- 14 2.1 X 10- 14

320 2.0 x 10- 12 2.0 x 10- 13 6.6 x 10- 14

Table 2: Residual Error for Test Cases

I
I
I

Number of Iterative/Direct
Elements flops

N L=1 L=10 L=100
40 1.95 3.00 5.55
80 2.03 4.65 -

160 2.06 - -1320 1.61 - -

I Table 3: Conjugate Gradient Results for Test Cases
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3 GMRES Solver
We implement the preconditioned GMRES algorithm with restarts as de-

scribed in Shakib, Hughes, and Johan [3] (see Figure 3, which is reproduced
directly from their paper). Appendix A contains the GMRES subroutine
listing. The preconditioned system is assumed to have the form

(L-1 AU-1 )(Ux) = (L-'b) (5)

In Figure 3, k is the number of vectors we use before restarting the algorithm
(initiating a new GMRES cycle). If k = N, then the algorithm will converge
in one cycle. We also must supply a convergence tolerance (et,,) for the norm
of the preconditioned residual, and a maximum number of cycles (l,,,a.).

We examined the performance of the GMRES algorithm with no pre-
conditioner (L=U=I) and with a partial L U factorization. Because of the
nature of the boundary integral technique, it seems reasonable to expect that
the points which are physically closest to point i on the mesh will have the
dominant effect on the solution at point i. We therefore select a number of
neighboring points m to include in a banded approximation to A (which has
the same structure as a finite element mesh). This approximate A matrix
k is then decomposed to form L U. A diagonal preconditioner corresponds

to m=O. Figure 4 shows a schematic of the banded factorization scheme for
m=l and m = 2. Note that both L and U are now tightly banded matrices,
and it is possible to take advantage of this fact in storing and inverting them.

The number of floating point operations required to solve the system of
equations obviously depends on the number of cycles I required, the number
of vectors k chosen, and the size of the band m chosen for the preconditioner.
If the system has no preconditioner, it requires roughly (k + 1)N 2 flops for
each of the I cycles. (This figure neglects the costs associated with all dot
products, the Q-R algorithm, solving for y, and updating the solution.) If
the procedure terminates within a cycle (with less than k vectors used), the
number of flops will be less. If the system is preconditioned, then we need
(k + 1)(N 2 + 2mN) flops which is of the same order so long as m does not
need to grow with N.

The storage required for the GMRES algorithm is modest so long as k
remains small. We must store k vectors of length N for the iterations, plus
approximately k2 entries in the h matrix. In addition, the two preconditioner
matrices each require mN storage spaces.
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Box 1 - Preconditioned GMRES Algorithm.

Given A, b, L, U, k, eto and 1 m,, proceed as follows:

(Initialization)

b- L-'b

C= tol I l

(GMRES cycles)

For I = ,...,m

u= b - L-'AU-'z

U1

(GMRES iteration)

For i = ,...,k

Ui+ = L-AU-'ui

(Modified Gram-Schmidt orthogonalization)

For j = 1,...,i

Ii+lj = (ui, u,)

Ui+1 +- Ui+ - gi+l,juj

(End modified Gram-Schmidt orthogonalization)

h") = { I " " IIU,+,I I}T

I I Ui+1

I-Ui+i- I

(Q-R algorithm)

For j= .. ,-Forii - 11 ,i

1 J+ I. - c" l J
Figure 3: Preconditioned GMRES Algorithm (continued on next page)
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(End j loop)
,= (C(t))2 + ,/

ci =1
r

i+1

r

I rgot 4--0

Ei+1 =--i~ i

4i - Ci E

(End Q-R algorithm)

Convergence check: If 9i+ I e, Exit i loop

(End GMRES iteration)

Solve for y:

1.

'-i i -iY i-I [-
0 ... 0 h o Y, E,

Update solution:Ii
X +. X + yjuj

j=1

Convergence check: If 9j+ I e, Exit I loop

(End GMRES cycles)
X4-U-IM

Return

I
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4 GMRES Results

I 4.1 No Preconditioner

Tables 4 to 7 show the results of applying the GMRES aJgorithm without
preconditioning to the test problem considered. The convergence tolerance
(tol was set at 10-6. Note that if the maximum number of cycles max is greater
than N/(3(k + 1)), then the GMRES algorithm with one cycle requires more
flops than the direct solver. Consequently, we set that as an upper limit for
our tests for 1. The notation "-" in the table indicates that the solution
did not converge within the allowed cycle limits. In addition, the table shows
the ratio of the number of iterative flops5 to the direct flops. Notice that the
GMRES method becomes more competitive with the direct solution as the
matrices become larger. Also it is clear that the minimum in flops occurs
when k is large enough that the routine does not restart, i.e. when only one
cycle is used. Unfortunately, this corresponds to the most storage-intensive
use of the algorithm. Finally, we observe that the unpreconditioned algorithm
is not significantly faster than the direct solve.

I
I
I

5Assumed to be (I - 1)(k + 1)N2 + (i + 1)NI where i is the number of iterations in the
last cycle.
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I# of vectors L=1 L=10 L=100

k1 1 I/D 1 I/D lI I/D

1-7- - >1.0 -> 1.0 ->1.0

8 2 1 0.83 ->1.0 ->1.0
i9 1 9 0.75 2 8 1.42 ->1.0

10 1 9 0.75 2 3 1.13 2 10 1.65
11 1 9 0.75 1 11 0.90 2 2 1.13

I12 - N 1 9 0.75 1 1 11 0.90 1 12 0.98

Table 4: GMRES with No Preconditioner, N=40
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# of vectors L=1 L=10 L=I00
k 1 i I/D I i I/D 1 i I/D

1-5 - - >1.0 >1.0 >1.0
6 4 6 1.05 >1.0 >1.0
7 4 1 0.98 >1.0 >1.0
8 3 6 0.94 >1.0 >1.0
9 2 9 0.75 >1.0 >1.0

10 2 6 0.68 >1.0 >1.0
11 2 3 0.60 >1.0 - - >1.0
12 2 1 0.64 >1.0 - - >1.0
13 1 14 0.60 >1.0 - - >1.0
14 1 14 0.56 >1.0 ->.0

15 1 14 0.56 >1.0 - - >1.0
16 1 14 0.56 2 10 1.05 - - >1.0
17 1 14 0.56 2 10 1.09 - - >1.0
18 1 14 0.56 2 11 1.16 - - >1.0
19 1 14 0.56 2 3 0.90 - - >1.0
20 1 14 0.56 1 20 0.79 2 20 1.58
21 1 14 0.56 1 20 0.79 2 15 1.42
22 1 14 0.56 1 20 0.79 2 15 1.46
23 1 14 0.56 1 20 0.79 2 11 1.35
24 1 14 0.56 1 20 0.79 2 11 1.39
25 1 14 0.56 1 20 0.79 2 6 1.24
26 1 14 0.56 1 20 0.79 - - >1.00

27- N 1 14 0.56 1 20 0.79 1 27 1.05

Table 5: GMRES with No Preconditioner, N=80

14
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# of vectors L=1 L=10 L=100
k 1 i I/D 1 i I/D 1 i I/D

1-6 - - >1.0 - - >1.0 - - >1.0
7 6 3 0.83 - - >1.0 - - >1.0
8 5 1 0.71 - - >1.0 - >1.0
9 4 5 0.68 - - >1.0 - - >1.0

10 3 10 0.62 - - >1.0 - - >1.0
11 3 5 0.56 - - >1.0 - - >1.0
12 3 1 0.53 - - >1.0 - - >1.0
13 2 13 0.53 - - >1.0 - - >1.0
14 2 12 0.53 4 11 1.07 - - >1.0
15 2 10 0.51 4 7 1.05 - - >1.0
16 2 7 0.47 3 15 0.94 - - >1.0
17 2 3 0.41 3 12 0.92 - - >1.0
18 2 3 0.43 3 11 0.94 - - >1.0
19 2 1 0.41 3 7 0.90 - - >1.0
20 1 20 0.39 3 3 0.86 - - >1.0
21 1 20 0.39 2 19 0.79 - - >1.0
22 1 20 0.39 2 18 0.79 - - >1.0
23 1 20 0.39 2 18 0.81 - - >1.0
24 1 20 0.39 2 16 0.79 - - >1.0
25 1 20 0.39 2 14 0.77 - - >1.0
26 1 20 0.39 2 13 0.77 - - >1.0
27 1 20 0.39 2 13 0.79 - - >1.0
28 1 20 0.39 2 10 0.75 - - >1.0
29 1 20 0.39 2 8 0.73 - - >1.0
30 1 20 0.39 2 6 0.71 - - >1.0

I Table 6: GMRES with No Preconditioner, N=160 (continued on next page)

I
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# of vectors L=I L=10 L=100
k I i I/D 1 i I/D 1 i I/DI 31 1 20 0.39 2 4 0.69 - - >1.0

32 1 20 0.39 1 32 0.62 - - >1.0
33 1 20 0.39 1 32 0.62 - - >1.0
34 1 20 0.39 1 32 0.62 2 30 1.24
35 1 20 0.39 1 32 0.62 2 30 1.26
36 1 20 0.39 1 32 0.62 2 22 1.13
37 1 20 0.39 1 32 0.62 2 22 1.14
38 1 20 0.39 1 32 0.62 2 19 1.11

i 39 1 20 0.39 1 32 0.62 2 18 1.11
40 1 20 0.39 1 32 0.62 2 17 1.11
41 1 20 0.39 1 32 0.62 2 18 1.14
42 1 20 0.39 1 32 0.62 2 5 0.92

43- N 1 20 0.39 1 32 0.62 1 43 0.82

I
I
I
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4.2 Banded Preconditioner

We initially tested the preconditioner on the L=1 cases, which are the most
well-conditioned systems, with disappointing results. The diagonal precon-
ditioner (m=O) had essentially no effect, since the diagonals of the original
matrix are almost all equal. A full LU decomposition (r=N - 1) caused the
iteration to converge in exactly one step, as expected. However, other val-
ues of m actually degraded the performance of the algorithm. For instance,
m=1 (a psuedo-tridiagonal preconditioner) caused slower convergence for N

= 40,80, and 160. Larger values of m also caused slower convergence than
no preconditioner. Checking the condition number of the preconditioned
matrices showed that it was, in fact, worse than for the original matrices.
One possible explanation for this is that the condition number of the C!o'ginal

I matrices is already so good that little heuristic improvement is possible.
As a second check, we examine the effect of the preconditioner on the

L=100, N=80 matrix, which converges poorly and has a condition number
of 4.7 x 10' in its original form. Using a preconditioner with m=1 to 10,
we find no convergence at all in the allowed number of iterations.

5 Conclusions

I The GMRES technique requires somewhat fewer flops than a direct solve as
the full, unsymmetric b3undary integral matrices we tested become large.
However, the ratio was only .23 at best. The heuristic preconditioner we

tested did not improve the convergence. In general. unless a good precondi-
tioner or a good approximation to the solution x is available, the additional
storage and uncertainty associated with the iterative solver make it imprac-

tical for full matrices.

II
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I # of vectors L=1 L=10 L=100
k 1 i I/D 1 i I/D 1 i I/DI 5 - - >1.0 - - >1.0 - - >1.0
6 15 3 0.96 - - > 1.0 - - > 1.0
7 10 4 0.72 - - >1.0 - - >1.0
8 7 6 0.57 - - >1.0 - - >1.0
9 5 8 0.46 - - >1.0 - - > 1.0
10 4 17 0.38 - - >1.0 - - >1.0
11 4 3 0.38 - - >1.0 - - >1.0
12 3 8 0.33 8 10 0.96 - - >1.0
13 3 5 0.32 7 9 0.88 - - > 1.0
14 3 1 0.30 6 10 0.81 - - >1.0
15 2 13 0.28 5 14 0.74 - - > 1.0
16 2 13 0.29 5 6 0.70 - - > 1.0
17 2 12 0.29 4 14 0.65 - - >1.0
18 2 8 0.26 4 11 0.65 - - >1.0
19 2 5 0.24 4 8 0.65 - - > 1.0
20 2 5 0.25 3 19 0.58 - - >1.0
21 2 3 0.24 3 17 0.58 - - >1.0
22 2 1 0.23 3 15 0.58 - - > 1.0
23 1 23 0.23 3 12 0.57 - - >1.0
24 1 23 0.23 3 7 0.54 - - >1.0
25 1 23 0.23 3 3 0.52 - - >1.0
26 1 23 0.23 2 25 0.50 - - >1.0
27 1 23 0.23 2 24 0.50 - - >1.0
28 1 23 0.23 2 23 0.50 - - >1.0
29 1 23 0.23 2 23 0.51 - - >1.0
30 1 23 0.23 2 22 0.51 >1.0
31 1 23 0.23 2 21 0.51 - - >1.0

32 1 23 0.23 2 19 0.50 - - >1.0
33 1 23 0.23 2 17 0.49 >1.0
34 1 23 0.23 2 16 0.49 - - >1.0

35 1 23 0.23 2 14 0.48 - - >1.0

Table 7: GMRES with No Preconditioner, N=320, (continued next page)
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I # of vectors L=I L=10 L=100
k 1 i I/D 1 i I/D I i I/D

36 1 23 0.23 2 13 0.48 - - >1.0
37 1 23 0.23 2 11 0.47 - - >1.0
38 i 23 0.23 2 9 0.46 - - >1.0
39 1 23 0.23 2 5 0.43 - - >1.0

40 1 23 0.23 2 5 0.44 - - >1.0
41 1 23 0.23 1 41 0.39 - - >1.0
42 1 23 0.23 1 41 0.39 - - >1.0
43 1 23 0.23 1 41 0.39 3 42 1.23
44 1 23 0.23 1 41 0.39 3 42 1.25
45 1 23 0.23 1 41 0.39 3 33 1.18
46 1 23 0.23 1 41 0.39 3 34 1.21

47 1 23 0.23 1 41 0.39 3 30 1.19
48 1 23 0.23 1 41 0.39 3 27 1.18

49 1 23 0.23 1 41 0.39 2 49 0.94
50 1 23 0.23 1 41 0.39 3 20 1.06

I51 1 23 0.23 1 41 0.39 2 50 0.97

52 1 23 0.23 1 41 0.39 2 50 0.98
53 1 23 0.23 1 41 0.39 2 48 0.97
54 1 23 0.23 1 41 0.39 2 41 0.91
55 1 23 0.23 1 41 0.39 2 42 0.93
56 1 23 0.23 1 41 0.39 2 42 0.94

I57 i23 0.23 1 41 0.39 2 34 0.87
58 1 23 0.23 1 41 0.39 2 34 0.88
59 1 23 0.23 1 41 0.39 2 33 0.88
60 1 23 0.23 1 41 0.39 2 33 0.89

61 1 23 0.23 1 41 0.39 2 24 0.82
62 1 23 0.23 1 41 0.39 2 23 0.82
63 1 23 0.23 1 41 0.39 2 21 0.81

64 1 23 0.23 1 41 0.39 2 22 0.82
65 1 23 0.23 1 41 0.39 2 13 0.75
66 1 23 0.23 1 41 0.39 2 11 0.74

67 1 23 0.23 1 41 0.39 2 13 0.77

68- N 1 23 0.23 1 41 0.39 1 68 0.65

I
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A GMRES Program Listings
The routines listed below are available on the Apollo network. The main
routine is in //kilroy/users/olson/gmres/gmres.ftn and the utility routines
are in //kilroy/users/olson/grmres/util.ftn.

SUBROUTINE GMRES (AKX,B,AU,ALZ,UEBARBETA,HBAR,CSY,

I NNX,K,KP1,TOLMAX,NITER,NK)

C USE THE GENERALIZED MINIMAL RESIDUAL METHOD TO SOLVE
C AK*X=R, WHERE AK IS A FULL UNSYMMETRIC N X N

C MATRIX (SEE SHAKIB, HUGHES, JOHAN, P17)
C
C INPUTS:
C AK (N,N) = STIFF NES S MATRIX
C X(N) = SOLUTION VECTOR
C B(N) = LOAD VECTOR
C AU(NN) = UPPER TRIANGULAR
C PRECONDITIONING MATRIX
C (STORED AS A FULL MATRIX FOR TESTING PURPOSES)
C AL(N,N) = LOWER TRIANGULAR
C PRECONDITIONING MATRIX
C (STORED AS A FULL MATRIX FOR TESTING PURPOSES)
C Z(N) - WORKING VECTOR
C U(N,K+I) = WORKING VECTORC EBAR(K+I) = WORKING VECTOR

C BETA(K IK) = WORKING VECTOR
C HBAR(K+I,K) = WORKING VECTORC C(K) = WORKING VECTOR (COSINES IN Q-R)

C S(K) = WORKING VECTOR (SINES IN Q-R)

C Y(K) = WORKING VECTOR (WEIGHTS FOR U)
C N = ACTUAL DIMENSION OF STIFFNESS MATRIX

C NX = STATED DIMENSION OF STIFFNESS MATRIX
C K = NUMBER OF VECTORS IN GMRES ITERATION
C KPI = K+1
C TOL = TOLERANCE FOR CONVERGENCE CHECK
C MAX a MAXIMUM NUMBER OF CYCLES ALLOWED
C
C OUTPUTS:

I 21

I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



C X(N) = SOLUTION VECTOR
C NITER = ACTUAL NUMBER OF CYCLES USED

C NK = NUMBER OF VECTORS REQUIRED IN LAST ITERATION
C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION AK(NX,*),XC*),B(*),AU(NX,*),AL(NX,*),Z(*).
1 U(NX, *),EBAR(*), BETA KPl, *),HBAR(KPl,*)C(*) S(*), Y(*)

C

C INITIALIZE VARIABLES
C

RZERO=1 .OE-20

DO 10 I=1,N
DO 5 31I,I-1

B(I)=B(I) - AL(I,J)*B(J)

5 CONTINUE
B(I)=B(I)/AL(I ,I)

10 CONTINUE

CALL DOT (BB,N,EPs)
EPS=TOL*SQRT(EPS)

CALL ZERO (X,N)I CALL ZERO (Z,N)
NMATEL=N*KP 1
CALL ZERO (UNMATEL)I CALL ZERO (EBAR,KPl)
NMATEL=K*KP 1
CALL ZERO (BETA,NMATEL)I CALL ZERO (HBAR,NMATEL)
CALL ZERO (C,K)
CALL ZERO (SK)I CALL ZERO (Y,K)

C
C ITERATE AT MOST MAX TIMES (GMRES, CYCLES)I C

DO 800 L=1,MAX
NITER=LI CALL ZERO (Z,N)
CALL PREMUL (ALAK,AUX,U(1,i),N,NX,Z)I DO 310 INDEX=1,N

U(N 1X~)B(INDEX)-ZINDEX)
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310 CONTINUE

CALL DOT (U(i,1),UC1,1),N,EBAR(1))

EBAR(1)=SQRT(EBAR(1))
DO 320 INDEX=1,N

U(INDEX,1)=U(INDEX, 1)/EBAR~l)

320 CONTINUE
C
C GMRES ITERATION
C

DO 400 I=i,K

IXZ
CALL ZERO (U(1,I+1),N)
CALL PREMUL (AL,AK,AU,U(1,I),ZN,NX,U(1,I.1))

C

C MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION
C

DO 330 J=1,1

CALL DOT (U(1,I.1),U(1,J),NBETA(I1,J))
DO 325 INDEX=1,N

U(INDEX,I+1)=U(INDEX,I+l)-

325 CONINUEBETA(I.1 ,J)*U(INDEX,J)

I330 CONTINUE

C END MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION
CI CALL DOT (U(1,I+1),U(1,I+1),N,TEMPp)

TEMP=SQRT (TEMP)
DO 340 INDEX=1,II HBAR(INDEX,I)=BETA(I+1 SINDEX)

340 CONTINUE

HBAR(I.1 .I)=TEMPI IF (ABS(TEMP).GT.1.OE-20) TEMP=1.0/TEMP
DO 350 INDEX=1,N

U(INDEX,I+1)=U(IKDEX,I+1) *TEMPI350 CONTINUE
C
C Q-R ALGORITHMI C
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DO 360 J=1,I-I

TEMPI=C(J)*HBAR(J,I) + S(J)*HBAR(J41.I)
TENP2=-S(J)*HBAR(J,I) +C(J)*HBAR(3+1,I)
HBAR(J,I)=TEMP1

HBAR(J+1 ,I)=TEMP2
360 CONTINUE

R=SQRT(HBAR(I,I)*HBAR(I,I) + HBAR(I.1,I)*HBAR(I+1,I))
C(I)=HBARcr ,I)/R

S(I)=HBAR(I+1 ,I)/R
HBAR(I,I)=R

EBAR(I+1,I'u0.0

EBAR(I+1)=-SCI)*EBAR(I)
EBAR(I)=C(I)*EBAR(I)

C END Q-R ALGORITHM
C CHECK FOR CONVERGENCE

IF (ABS(EBAR(I.1)).LT.EPS) Go TO 500
C
C END GMRES, ITERATION?
C

400 CONTINUE
S00 CONTINUE

C SOLVE FOR Ia

CALL ZERO (Y,K)
DO 510 INDEX=NK1.-l

Y(INDEX) =EBAR(INDEX)
DO 505 IND=INDEX+1,K

Y(INDEX)=Y(INDEX) - Y(IND)*HBAR(INDEX,IND)
505 CONTINUE

IF (ABS(HBAR(INDEX,INDEX)) .LT.RZERO) THEN
Y(INDEX)=0.o

ELEY(INDEX)=Y(INDEX)/HBAR(INDEX 
,INDEX)

ENDIF
510 CONTINUE
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C UPDATE SOLUTIONI c
DJ 650 J=1,K

DO 600 INDEX=1,N

X(INDEX)=X(INDEX)+ Y(J)*U(INDEX,J)
600 CONTINUE
650 CONTINUE

C

C CHECK FOR CONVERGENCE
C

IF (ABS(EBAR(NK+I)).LT.EPS) GO TO 900

C END GMRES CYCLES, FAILURE TO CONVERGE
C

800 CONTINUE
WRITE (,,) 'SOLUTION DID NOT CONVEhGE IN',MAX,'CYCLES'
WRITE (,,) 'X=',(X(I),I=1,N)

STOP
C
C SOLUTION CONVERGED

C
900 CONTINUE

DO 920 I=N,1,-1

DO 910 J=I I,N

X(I)=X(I) - AU(I,J)*X(J)
910 CONTINUE

X(I)=X(I)'AU(I,I)
920 CONTINUE

RETURN

END

SUBROUTINE DOT (W1,W2,N,TEMP)Ic
C FIND THE DOT PRODUCT OF TWO VECTORS
C

C INPUTS:
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C WI(N) = FIRST VECTOR

C W2(N) = SECOND VECTOR

C N = LENGTH OF VECTORS
C

C OUTPUTS:

C TEMP = W*W
C

IMPLICIT REAL*8 (A-H,O-Z)I DIMENSION Wl(N) ,W2(N)
C

TEMP=0.O

DO 100 I=1,N
TEMP=TEMP + Wl(I)*W2(I)

100 CONTINUEI RETURN
END

I SUBROUTINE ZERO (X,N)
C

C SET xTo ZEROI C
C INPUTS:

C X(N) = VECTOR TO BE ZEROEDIC N a SIZE Of VECTOR
C

C OUTPUTS:IC X =0

C

IMPLICIT REAL*8 (A-HO-Z)U DIMENSION X(N)
C

DO 100 I=1,NI X(I)=0 .0
100 CONTINUE

I RETURN
END

SUBROUTINE PREMUL (AL,AK,AU,XW,N,NX,Z)
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C
C FORM Z=(AL)-I * AK * (AU)'-1 * X
C
C INPUTS:
C AL(N,N) = LOWER DIAGONAL PRECONDITIONING MATRIX
C AK(N,N) = STIFFNESS MATRIX
C AU(N,N) = UPPER DIAGONAL PRECONDITIONING MATRIX
C X(N) = SOLUTION VECTORI C W(N) = WORKING VECTOR
C N = SIZE OF ARRAYS
C NX = DECLAPED SIZE OF ARRAYS
C
C OUTPUTS:

C Z(N) = AL-I * AK * AU-I * X
C
C

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AL(NX,*),AK(NX,*),AU(NX,*),X(*),W(*),Z(*)

C
C AU'-1 * X
C

DO 20 I=N,1,-1
W(I)=X(I)

DO 10 J=I+IN
W(I)=W(I) - AU(I.J)*W(J)

10 CONTINUE

W(I)=W(I)/AU(II)
20 CONTINUE

C
C AK* AU'-1 *X
C

DO 100 I=I,N

Z(I)=O.O
DO SO J31,N

Z(I)=Z(I) + AK(I,J)*W(J)

50 CONTINUE
100 CONTINUE

C

C AL-1 * AK * AU'-l *X
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C

DO 200 I=1,N

DO 150 J=1,I-1

Z(I)=Z(I) -AL(I,J)*Z(J)

150 CONTINUEI Z(I)=Z(I)/AL(I ,I)
200 CONTINUE

I RETURN

END
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